منابع مشابه
House Markets with Matroid and Knapsack Constraints
Classical online bipartite matching problem and its generalizations are central algorithmic optimization problems. The second related line of research is in the area of algorithmic mechanism design, referring to the broad class of house allocation or assignment problems. We introduce a single framework that unifies and generalizes these two streams of models. Our generalizations allow for arbit...
متن کاملKnapsack Cover Subject to a Matroid Constraint
We consider the Knapsack Covering problem subject to a matroid constraint. In this problem, we are given an universe U of n items where item i has attributes: a cost c(i) and a size s(i). We also have a demand D. We are also given a matroid M = (U, I) on the set U . A feasible solution S to the problem is one such that (i) the cumulative size of the items chosen is at least D, and (ii) the set ...
متن کاملFacility Location with Matroid or Knapsack Constraints
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print ...
متن کاملMaximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints
Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...
متن کاملMatroid Secretary Problems
In 1963, Dynkin introduced the secretary problem [6]. In this problem, an algorithm is presented with n positive values, one by one. After each value, the algorithm must either accept or reject the value, where all decisions are final. The algorithm can only pick one value, and the goal is to pick the maximum value in the sequence. The name for this problem arises from a situation where n candi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithmica
سال: 2015
ISSN: 0178-4617,1432-0541
DOI: 10.1007/s00453-015-0010-1